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1 Introduction and located with respect to a generic niodel. and the
object's pose is determined.

Our world contains an overwhelming variety of objects. To follow this example, I propose a scheme for recog-
While people demonstrate outstanding abilities to mem- nizing 3D objects from single 2D views that combines
orize and recognize thousands of objects [27, 37, 38], the two stages, categorization and identification. Cat-
computer vision applications largely fail to accommodate egorization is achieved by aligning the image to proto-
these numbers. Apparently, the main tool that enables type objects. The prototype that appears most sinular
people to effectively handle this massive amount of ob- to the image determines the class identity of the object.
jects is categorization. By dividing the observed objects After the object is categorized, its specific identity is de-
into classes, the visual system is capable of concluding termnined by aligning the observed object to individual
properties of unfamiliar objects from their resemblance models of its class. By first categorizing the object, not
to familiar ones. For familiar objects, categorization of- only the number of models considered for identification
fers an indexing tool into the stored library of object is reduced, but also the cost of comparing each model
representations. to the image significantly decreases. This is achieved by

Recognition can be performed in different "levels of reusing the correspondence and pose computed for the
abstraction". For example, the same object can be rec- prototype in the categorization stage to align the image
ognized as a face, a human face, or as a specific person's with the individual models. We show in this paper that,
face. Psychological studies suggest the existence of a pre- albeit a perfect match between the prototype and the
ferred level for recognition, called "the basic level of ab- image is not obtainable, the correspondence and pose
straction" [33]. Existing computational schemes usually can be computed for the prototype, and can be used
approach recognition in either one of two levels. Several to bring the image and the object's model into align-
schemes attempt to classify objects in their basic level ment. Consequently, recovering the correspondence and
of abstraction (we refer to this task by calegorization), pose for the individual models becomes unnecessary, and
while other schemes attempt to determine the specific identification is reduced to a series of simple template
identity of objects (we refer to this task by identifica- comparisons.
tion). This paper presents a novel approach for recogni- The rest of this paper is divided as follows. Section 2
tion that combines the two tasks. reviews the main existing approaches for categorization

To see how the two tasks are related, consider the fol- and identification. Section 3 presents the scheme of
lowing example. Suppose you are walking down a street, recognition by prototypes. Section 4 proposes an algo-
and someone is coming towards you. You look at the rithm for generating optimal prototypes for the scheme.
person's face, and it looks familiar, but you cannot tell Section 5 discusses the relevance of the scheme to hu-
who it is. So you try to picture the people you know who man recognition. Implementation results are presented
look like the person you see, until finally, you realize who in Section 6.
the person is.

A number of hypotheses can be drawn from this story. 2 Previous Approaches
First, recognition can be broken into two stages: cat-
egorization and identification, where categorization is Existing schemes for categorization often use a "reduc-
believed to precede identification. Second, during the tionist" approach. The image, which contains a detailed
course of recognition the image is compared against a appearance of an object, is transformed into a compact
number of object models. Assuming that indeed catego- representation that is invariant for all objects of the
rization precedes identification, only models that belong same class. One common approach to generating such a
to the object's class need to be considered. Finally, when representation is by decomposing the object into parts.
a new model is compared to the image, the comparison Parts are extracted by cutting the object in concavities
process may benefit from the use of information acquired [17, 22, 43] and labeled according to their general shape.
during categorization. Note that the situation described The labels, together with the spatial relationships be-
here is not specific to faces. One can imagine that simi- tween the parts, are used to identify the class of the ob-
lar situations occur when other objects, such as animals, ject [4, 6, 7, 26]. A second approach extracts the parts of
cars, and chairs, are observed. the object that fulfill certain functions. The list of func-

To see hw information acquired during categoriza- tions is used to determine the object's class [16, 39, 47].
tion can be used for identification, consider the example Schemes that break objects into parts are insufficient
of face recognition. When a face is recognized, the image to explain all the aspects of recognition for the following
positions of its parts and features are known. In partic- reasons. First, in many cases objects that belong to the
ular, an observer already knows where the eyes, nose, same class differ only by their detailed shape, while they
and mouth are and can even infer the direction of gaze share roughly the same set of parts. Moreover, even ob-
and expression. The person's identity is not essential for jects that at some level may be considered belonging to
extracting and locating these features. Instead, they are different classes, such as a cat and a dog, may also share
matched against features in a "generic" representation. roughly the same set of parts. To solve this problem sev-
In addition, other features, such as a beard, hair style, eral systems also store, in addition to the part structure
and wrinkles, that may better distinguish between dif- of the objects, the detailed shape of the parts [2, 6, 7].
ferent persons may be located. More generally, we can Another problem is that many of the techniques for rec-
postulate that, during categorization, sub-structures of ognizing objects by part decomposition rely on finding
the objects (such as parts and features) are extracted the entire parts from the image.

1



To recognize the specific identity of objects, a rela- type object, the system attempts to recover the view of
tively detailed representation of the object's shape is the prototype that most resembles the iniagp To do so.
compared with the image. An example for such methods the system recovers the correspondence bet wrt.J the prt,-
is alignment [3, 9, 12, 13, 18, 23, 25, 40, 41]. Alignment totype and the image, and, using this correspondence. it
involves recovering the position and orientation (pose) in determines the transformation that best aligns the pro,-
which the object is observed and comparing the appear- totype with the image. This transformation, referred
ance of the object from that pose with the image. Only to as the prototype transforwi, is then applied to the
a few attempts have been made in the past to extend prototype, and the similarity between the transformed
the alignment scheme to the problem of object catego- prototype and the actual image is evaluated. Since the
rization (e.g., [36]). The main difficulty in applying the observed object in general differs from the prototype ob-
alignment approach is the recovery of the pose of the ject, a perfect match between the two is no* anticipated.
observed object. In most implementations this involves The system therefore seeks a prototype that reasonably
a time-consuming stage for finding the correspondence matches the image. Once su:h a prototype is found, the
between the model and the image. The process becomes class identity of the object is determined.
impractical when the image is compared against a large After the object's class is determined, the system at-
library of objects, because typically the correspondence tempts to recover the specific identity of the object. At
is established between the image and each of the models this stage, the image is matched against all the models
in the library separately. of the object's class. For each of these models, the sys-

To handle large libraries, indexing methods wert pro- tem seeks to recover the transformation that aligns the
posed (e.g., [20, 46, 14]). The basic idea is the following, model with the image. As will be shown below, since the
A certain function is defined and applied to the views of models are aligned in the library with the prototype, the
all the objects in the library. The object models are ar- transformation that best aligns the prototype with the
ranged in a look-up table indexed by the obtained func- image is identical to the transformation that aligns the
tion values. When an image is given, the function is model to the image. The prototype transform therefore
applied to the image, and the obtained value is used to is applied to the specific models, and their appearance
index into the table. To reduce the size of the table and from this pose is compared with the image. The model
the complexity of its preparation, invariant functions, that aligns with the image, if there is such, determines
functions that when applied to different views of an ob- the specific identity of the object.
ject return the same value regardless of viewpoint, often The rest of this section is divided as follows. In Sec-
are used as the indexing functions. tion 3.1 the object representation used in our scheme is

Indexing methods suffer from several shortcomings. presented. Section 3.2 describes the categorization stage,
First, existing indexing methods handle only rigid ob- and Section 3.3 describes the identification stage.
jects. Extending these methods to handle classes of ob-
jects has not been discussed. Second, because of com- 3.1 Object representation - the linear
plexity issues, indexing functions usually are applied to combination scheme
small numbers of features. As a result, high rates of In our scheme, an object is modeled by a matrix M
false positives are obtained, and the effectiveness of the of size n x k, where n is the number of feature points,
indexing is reduced. and k represents the degrees of freedom of the object.

The scheme presented in this paper is designed to A vector 5 E Rk, referred to as the transform vector,
work where traditional approaches to categorization and represents the transformation applied to the object in a
indexing fail. The scheme combines both categorization certain view, and the object's appearancc from this view
and identification of objects, and uses fairly detailed rep- is given by
resentations for objects. Rather than indexing directly i7 = Md (1)
to the specific object model, the scheme indexes into In the rest of this section we explain the use of this nota-
the library of objects by categorizing the object. The
classes handled by the scheme include objects with rel- tion. The notation follows from the linear combination
atively similar shapes. To fit into the scheme, in some scheme [42], which is briefly reviewed below.

cases basic level classes are broken into sub-classes. The Under the linear combination scheme an object is
general problem of categorization therefore may require modeled by a small set of views, each is represented
additional tools. by a vector containing point positions, where the points

in these views are ordered in correspondence. Novel
3 Recognition by Prototypes views of the object are obtained by applying linear com-binations to the stored views. Additional constraints

The recognition by prototypes scheme proceeds as fol- may apply to the coefficients of this linear combination.
lows. A library of 3D object models is stored in mem- Computing the object pose therefore requires recovering
ory. The models in the library are divided into classes, the coefficients of the linear combination that align the
and 3D prototype objects are selected to represent the model with the image and verifying that the recovered
classes. For every class, the models in the class are coefficients indeed satisfy the constraints. The method
aligned in the library with the prototype object. The handles rigid objects under weak-perspective projection
role of this 3D alignment will become clear shortly. (namely, orthographic nrojection followed by a uniform

At recognition time, an incoming 2D image is first scaling). It was extended to approximate the appearance
matched against all of the prototypes. For each proto- of objects with smooth bounding surfaces and to handle
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articulated objects. In our representation, the columns Views of the object can be constructed as follows
of the model matrix At contain views of the object, and
the coefficients of the linear combination that align the (6)
model with the image are given by the transform vector Y = Ai
d. F where d = (a,.a 2 ,a 3 , a4 ) and b= (bl.b 2 b3,b b4 ) are the

For concreteness, we review the linear combination coefficients from Eq. 3. Notice that the two linear svs-

scheme for rigid objects. Consider a 3D object 0 that
contains n feature points (Xi, Y1, Zi), 1 < i < n. Under tems can oe merged into one by constructing a modified

' model matrix in the following way
weak-perspective projection, the position of the object
following a rotation R, translation T, and scaling s isb( = M 0M (7)
given by 0g~ AlM) 7

xi = sriiXi + sr12Y; + srl3 Zi + G (2) Similar constructions can be obtained for objects with
yj = -r 2, Xi + sr 22 Yi + sr 23 Zi + ty ( smooth bounding surfaces and for articulated objects.

The width of M, k, should then be modified according
where rt0 are the components of the rotation matrix, R, to the degrees of freedom of the modeled object. As was
and t1., ty are the horizontal and vertical components of mentioned above, viewer-centered representations can be
the translation vector, t respectively. obtained by constructing a basis for the 4D space from

Denote by X YZ, i, 9 E R'" vectors of Xi, Yi, Zi , xi images of the object. Therefore, viewer-centered models
and yi values respectively, and denote f = (1,..., 1) E can be obtained by replacing the column vectors of Al
R", we can rewrite Eq. 2 in a vector equation as follows: with the constructed basis.

+ To summarize, following the linear combination
i = alX + a2Y + a3Z + a4l scheme we can represent an object by a matrix M and

= b X.g + b2Y7 + b3 Z + b4 Y construct views of the object by applying it to trans-
form vectors d. For rigid objects not every transform

where vector is valid; the components of the transform vector
a, = sr 1l b, = sr21 must satisfy the two quadratic constraints. Recognition
a2 = sr 1 2 b = = sr 2 2  involves recovering the transform vector d and verifying
a 3  = sr 1 3  b3  = sr 23  that its components satisfy the two constraints. Ignor-
a4 = b4 = ty ing these constraints will result in recognizing the object

Therefore even when it undergoes general 3D affine transformation.
i, 9 E span{X, g, g, "} (4) In the analysis below we largely ignore the quadratic

Diff,-rent views of the object are obtained by chang- constraints. These constraints, however, can be verified
Diffrentview both during the categorization stage as well as during

ing the rotation, scale, and translation parameters, and the identification stage.
these changes result in changing the coefficients in Eq. 3.
We may therefore conclude that all the views of a rigid 3.2 Categorization
object are contained in a 4D linear space. The recognition by prototypes scheme begins by deter-

This property, that the views of a rigid object are mining the object's category. This is achieved by cor-
contained in a 4D linear space, provides a method for paring the objedtosjcatorototype objcts, bjcts
constructing viewer-centered representations for the ob- paring the observed object to prototype objects, objects
ject. The idea is to use images of the object to construct that are "typical exemplars" for their classes. For a given

a basis for this space. In general, two views provide suf- prototype, the view of the prototype that most resem-
ficiently many vectors. Therefore, any novel view is a bles the image is recovered and compared to the actual

linear combination of two views [30, 42]. image, and the result of this ccmparison determines the

Not every linear combination is a valid view of a rigid class identity of the object.

object. Following the orthonormality of the row vectors We begin our description of the categorization stage

of the rotation matrix, the coefficients in Eq. 3 must by defining the data structures used by the scheme. A

satisfy the two quadratic constraints class C = (P, {M1, M2 ,..., Ml)) is a pair that includes a
prototype P and a set of object models M 1 , M 2, ... , Mt.

a-2 + a2 + a2 = b2 + b2 + b ( Both the prototype and the models are represented bya1 b + a2 b + a3 = 0 (5) n x k matrices, where n defines the number of featurepoints considered, and k denotes the degrees of freedom
When the constraints are not satisfied, distorted (by of the objects. For the sake of simplicity we assume here
stretch or shear) pictures of the objects are generated. that all the objects share the same number of feature
In case a viewer-centered representation is used, the con- points, n, and that they have similar degrees of freedom,
straints change in accordance with the selected basis. A k. Note that similar objects tend to have similar degrees
third view of the object can be used to recover the new of freedom (e.g., all of them are rigid). Both assumptions
constraints. are not strict, however. The scheme can be modified to

For the purpose of this paper a model for a rigid object tolerate both varying number of feature points as well
can be constructed by building the following n x 4 model as different degrees of freedom. The details will be dis-
matrix cussed later in this paper. Note that the objects can

M = (X, 1, Z, r) be modeled by either object-centered or viewer-centered
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representations. In case viewer-centered representations Assuming the correspondence problem can be solved.
are used we shall assume that the models represent the the scheme proceeds as follows. Given a prototype P
objects from the same range of viewpoints, and an image I, we generate a view vector r from the

A class in our scheme contains objects with similar image by extracting the location of feature points and
shapes. These objects share roughly the same topolo- arranging them in a vector. The points in iF are ordered
gies, and there exists a "natural" correspondence be- in correspondence to the prototype points: that is. the
tween them. Consider, for instance, the two chairs in first point in F corresponds to the first point in P and
Figure 1. Although the shapes of these chairs are dif- so forth. The prototype transform is the transformation
ferent, and some parts (e.g., the arms) appear only in that brings the prototype points as close as possible to
one chair and not in the other, a natural correspondence their corresponding image points. The prototype trans-
between features in the two objects can be determined, form, therefore, is the transform vector b that minimizes

In the library of models, the natural correspondence the least-squared distance between the prototype and
between objects is made explicit. It is specified by the image points, namely
order of the row vectors of the models. Specifically, given mqin JIPb' - V711 (8)
a prototype P and object models M 1, ... , MI, we order b,

the rows of these models such that the first feature point
of P corresponds to the first feature point of each of the A solution for (8) is obtained as follows. Assuming P

models M 1 ,...,MI, and sci forth. is overdetermined; that is, P is n x k where n > i: and

Given the library of objects and given an incoming im- rank(P) = k, and denote by P+ = (pp)-TlpT tile

age, the recognition by prototypes scheme begins by cat- pseudo-inverse of P, the prototype transform, E, is given
egorizing the object observed in the image. To achieve by
this goal, the prototype objects are aligned and com- b= P+ i (9)
pared to the image. For every prototype, the correspon- and the nearest prototype view ; is obtained by applying
dence between the image and the prototype is first re- P to the prototype transform, b, that is
solved, and, using this correspondence, the nearest pro-
totype view is recovered. By doing so, the scheme de- p = PE = PP+V (10)
couples the two factors that affect the appearance of the
object in the image, namely, view variations and shape The nearest prototype view is now compared to the
variations. By selecting the nearest prototype view to image, and their resemblance determines the class iden-
the image, the scheme compensates for view variations. tity of the object. The quality of the match between the
Then, by evaluating the similarity between the nearest prototype and the image is defined by
prototype view and the actual image, it accounts for the D(P, V) = Ilf- vJJ = JJ(PP+ - I)v1 (11)
differences in shape between the prototype and the ob-
served object. To eliminate effects due to scaling of the object, this

The first stage in matching the prototype to the image measure should be normalized, as is illustrated by the

involves the recovery of correspondence between proto- example below. Consider an object seen from some view

type and image features. In existing systems for rec- v 1. Its distance to the prototype is given by D(P, Ti).

ognizing the specific identity of objects establishing the Suppose the object is now seen from a new view iT2 that

correspondence between images and object models in- is identical to 61, except that the object is now as twice
volves a time-consuming process in which sophisticated as close to the camera. Under these conditions VT2 = 2671,
algorithms are applied [10, 13, 15, 18, 23, 25, 35, 41]t and its distance to the prototype is given by D(P, iT2 ) =
Thesealgorithms a reappled [10, 13, 15,perty 18 , 35,e t 2D(P, 61 ). Clearly, we should have a measure that is
These algorithms rely on the property that, when te independent of the distance of the object to the camera.
correct correspondence between a model and an image is i
established, a near-perfect match between the two is ob- One way to obtain such a measure is by dividing D(P, if)

tained. While this assumption is valid for identification, by the norm 11011

it cannot be used under our scheme since the prototype ( = (PP+ - l)I(1
and the image generally represent different objects. Ik(P, v- ( 1)0 [ (12)

To determine the correspondence between the proto-
type and the image, we define an objective function that D(P, V-) is proposed here as an objective function for
is applied to the prototype and the image under a given establishing the correspondence between the prototype
correspondence and that obtains its minimum under the and the image. In other words, we expect that if the ob-
correct correspondence. The objective function will mea- ject belongs to the prototype's class then 6(P, V-) obtains
sure the quality of the match between the prototype and its minimal value when VT is ordered in correspondence to
the image. Namely, under this measure the correct cor- P. Any other permutation will increase the value of b.
respondence is the one that brings the prototype into Formally, denote by a a permutation matrix, we assume
its best alignment with the image. Given this objective that
function, correspondence is a combinatorial optimization !b(P, V) = min D(P, av-) (13)
problem, and so minimization techniques can be used to a

resolve the correspondence between the prototype and The measure b(P, v) has a second role. Since it mea-
the image. This paper does not propose a specific tech- sures the similarity between the prototype and the im-
nique to solve the correspondence problem. age, it can also be used to determine the object's class.
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Figure 1: "Natural" correspondences between two chairs

An object observed in a view V belongs to the class rep- example for a measure that considers both the proxim-
resented by a prototype P if ity and similarity between feature points is the following

,6(P, V-) < e (14) measure. Each feature point is associated with a la-
bel (such as a corner or an inflection point). Again, the

for some constant ( > 0. We refer to (14) as the catego- measure D)(P, V) is applied, but this time only correspon-
rization criterion. dences between points with similar labels are allowed;

The categorization stage proceeds as follows. Given namely, corners in the image can only match corners in
an image I and a prototype P, the correspondence be- the prototype, and, similarly, inflection points can only
tween P and I is resolved by minimizing the measure match inflection points. Other examples for measures
b(P, aVi) over all possible permutation o of 6, and if the that combine proximity and similarity include measures
obtained minimum D(P, 6) is below the threshold c, then that retain the tangent or the curvature of points. More
the class identity of the object is determined, sophisticated measures may compare the topologies of

Note that in our scheme the prototype and the cate- the objects in the two views, or, in other words, verify
gorization criterion determine the actual division of ob- that the objects share similar part structures in 2D.
jects to classes; an object belongs to a certain class if A useful technique in measuring the similarity be-
its views are sufficiently similar, according to the cate- tween the image and the nearest prototype view is to
gorization criterion, to views of the prototype. Under consider a different set of features than the set used to
the above definition, an object belongs to a prototype's determine the prototype transform. The rational behind
class if the total difference between its feature points and this technique is that it is generally difficult to recover
their corresponding prototype points does not exceed c. exact feature-to-feature correspondence, and while such

The measure b(P, V) defined here determines the sim- correspondences are necessary for recovering the proto-
ilarity between the prototype P and the view 6 using type transform, similarity measures can be successfully
only the distances between feature points. In general, applied even in the absence of exact feature-to-feature
since correspondence is difficult to achieve, such a mea- correspondence. This idea resembles the basic principle
sure would not be robust. Including additional informa- of the alignment algorithm [18, 41], in which a small set
tion about the features in the similarity measure may of points is used to compute the object pose, while a
increase the robustness of the scheme. Also, measures larger set of points is used to verify this pose.
that consider only the proximity of feature points are It should be noted that the general flow of the scheme
limited in terms of dividing the library into classes, since and, in particular, the identification stage are indepen-
they induce classes of objects with highly similar shapes. dent of the specific choice of similarity measure. As has
Measures that consider additional information can ex- been noted above, the measure affects the division of
tend the classes to include larger sets of objects. model libraries into classes and the selection of optimal

The measure 1(P, V) can be enriched by considering prototypes for these classes. An example for selecting
the similarity between corresponding points. A simple the optimal prototype for a given class under the mea-
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sure specified in (12) (for either labeled or unlabeled fea- form, d. This is done, as is explained below, using th,
tures) is described in Section 4. prototype transform b = P+F defined in (9) Oncr 5 a,

Finally, although the main objective of the categoriza- recovered, it is applied to all the models .1 .... .111 ald
tion stage is to determine the class identity of the object, the model for which a near-perfect match is obtained
the categorization scheme described above is useful even determines the object's identity.
if the object's category cannot be determined. Section Theorem I below establishes that the model transform
3.3 below shows that the prototype transform can be d can be recovered directly from the prototype transforni
reused to align the image with the specific models. Con- b by applying a linear transformation which is referred to
sequently, following the categorization stage the cost of as the prototype-to-model transfomn. This transform ha.m
comparing the image to each of the specific models is two interesting properties. First, it is view-independent:
substantiall, reduced since the difficult part of recover- namely, for any given view of the object, the same trans-
ing the transformation that relates the models to the form maps the prototype transform that corresponds to
image is applied only to the prototype objects. As a re- this view to the correct model transform. The prototype-
sult, if the class identity of the object is not determined to-model transform therefore can be computed in ad-
we still need to consider all the specific models in th? vance and stored in the library of models. Second. the
library, but the overall cost of this process would be low prototype-to-model transform can be used to recover the
because correspondence is computed once for the whole model transform regardless of the quality of match be-
class. tween the prototype and the image. In other words.
3.3 Identification even if the prototype aligns poorly with the image, the

transformation that aligns the model with the image is
After the observed object is categorized, the system determined correctly in this process.
turns to recovering its individual identity. At this stage
the image is matched to all the models in the object's Theorem 1: Given a view F = Aid. Let =P+i

class. For each model, the system seeks to recover the be the prototype transform, that is. the transform vec-
transformation that aligns the model to the image, if tor that best aligns the prototype with the image. The

there is such. In previous schemes this required recover- model transform, d, can be recovered from the prototype
ing the correspondence between the image and each of transform, b, by applying a matrix Ai, namely
the models separately. In our scheme, however, this no
longer is necessary, since the object transform is deter- a = Aib

mined directly from the prototype transform. We show Ai is referred to as the prototype-to-model transform.
in this section that the prototype and the object trans-
forms are related by a simple transformation, which can Proof: Notice that
be computed in advance, and which can in fact be un-
done already in the library of stored models. Conse- b= P+F'= P+Mii

quently, the prototype transform can be reused in the Assume P+Mi is invertible, let
identification stage to align the individual models with
the image. Ai = (P+Mi)-'

The initial stage of categorization recovers three
pieces of information that can be used for identification. we obtain that

The three are (i) the object class, (ii) the correspon- a = Aib
dence between the prototype and the image, and (iii) o
the prototype transform. This information is used in
the identification stage as follows. First, since the ob- Corollary 2: The prototype-to-model transform is

ject's class is determined, only models that belong to view-independent.

this class are considered. Second, using the correspon- Proof: The prototype-to-model transform, Ai, is in-
dence between the prototype and the image established dependent of both pose vectors, d and E. Changing the
in the categorization stage, and using the stored corre- image v will result in a new pair of pose vectors, d and
spondence between the prototype and the object models, b but similar to the old pair, the new pair is related
the correspondence between the models and the image thbrough the same transform Ai,. The prototype-to-model

is immediately recovered. Finally, as is shown below, transform Ai therefore can be used to recover the object

the model transform, namely, the transformation that

aligns the model with the image, is recovered from the pose for any view of Mi. 0

prototype transform. Ai exists if P+Mi is invertible. This condition *s
Assume we are given with a view 6 of some object equivalent to requiring that the two column spaces of

model Mi, namely P and Mi will not be orthogonal in any direction. The
mo=e Mi, na y condition holds, in general, when the two objects are

S= Mi6 (15) fairly similar. This is illustrated by the following ex-

for some transform vector d. When the identification ample. Consider the case that both column spaces of
process begins, it is still unknown which of the models P and Mi are one-dimensional; namely, each represents
MI, ... , Mi of the object's class accounts for the image a line through the origin. The only case in this one-
and what the transform vector d is. The first task faced dimensional example in which Ai does not exist is when
by the scheme at this stage is to recover the model trans- P and Mi are orthogonal. But these lines are farthest



apart when they are orthogonal. Consequently, if the for instance, the case of similar chairs, some of which arr
objects are relatively similar A, would exist. folding. Obviously, the folding chairs have more degretv,

Since it depends only on the prototype P and the of freedom than the regular, rigid chairs. and therefort'
model Al,, the prototype-to-model transform A, can be they would be represented in the library by wider nia-
pre-computed and stored in the library of models. Ever)y trices than the rigid chairs are. As is explained belhw
model Al, E C is associated with its own transform A, the cairs can be handled in a common class, and tht,
that relates, for every possible view of M,, between the prototype for the class would itself be a fulding chair.
prototype transform and the model transform. To com- More generally, let All . A, i be a class of models of
pare the image to the model Al, the model transform different widths, and denote by k1 ... , ki the width of
should first be recovered. This is achieved by applying A1 ... , MA respectively. Let P be the prototype f-- this
A, to the prototype transform computed in the catego- class, and denote by kP the width of P, we set kP to be
rization stage.

Also, the prototype-to-model transform, A,, can be = max{ki.ki} (16)
used to align the model Mi with the prototype P in 3D. In other words, we require the prototype to have the
Denote the aligned model by MA, Mi models the same same degrees of freedom as the most flexible object in
object as M does, since their column vectors span the the class. We can set k. according to our goal since, as it
same space. In addition, the aligned model M,' has the is shown in Section 4, the prototype P is obtained in our

property that it is brought by the prototype transform, b scheme by manipulating the objects in the class. The
to a perfect alignment with the image. Consequently, if prototype-to-model transform A, is defined in this case
the models are aligned in the library with the prototype, by
the prototype transform computed in the categorization A, = (P+ , )+ (17)
stage can be reused for identification with no further where Ai is kP x k,. It is straightforward to extend The-
manipulations. This is established in Theorem 3 below. orem I to also include this case. Consequently, for any

Theorem 3: Let M,' = MA, be the model Mi aligned view of MA, the model transform d can be recovered from

with the prototype P. For any view F = Mid, the proto- its corresponding prototype transform b by applying the

type transform for this view b = P+ i is identical to the prototype-to-model transform Ai to b. Note that since

model transform for this view; that is, 6 = Mib. kp Ž_ ki the prototype can appear in poses that do not
match any possible model pose (and therefore in noise-

Proof: Since less conditions they are impossible to obtain). In case
mil = MiAi the object is observed from such a view, A, would map

we obtain that this unmatched prototype transform to the model trans-
form that corresponds to the nearest matched prototype

Mib = MiAib= MAi = F transform. By setting kP to be as large as the maximum
0] of k1 ,..., ki we avoid cases where there exist views of the

gTheorem 3the identificationschemeis object that cannot be accounted for by the prototype.
Using as3, f s The modentifi ,A11o ae a sn im- Model transforms that correspond to such views cannot

plified as follows. The models M1 , ... , Mi are aligned in be recovered from prototype transforms.

the library with the prototype P by applying the cor-

responding prototype-to-model transform, A1 , ... , A&. At 3.4 Summary
recognition time, the prototype transform b = P+ V, is We presented in this section a scheme for recognizing 3D
applied to the aligned models M•, ... , M[. According to objects from single 2D views that proceeds in two stages,

Theorems 1 and 3, by transforming the models by b the categorization and identification. In the categorization
correct model, M;, would perfectly align with the image. stage the image is compared against the stored proto-

In the scheme above we assumed that full feature-to- types. For every prototype, the correspondence between
feature correspondence is established between the proto- the image and the prototype is recovered, and the near-
type and the image. This assumption is not mandatory. est view of the prototype is constructed. The similarity
Methods for estimating the prototype transform using between this view and the image is evaluated, and, if the
partial correspondence or by considering other types of two are found similar, the class identity of the object is
features (such as line segments) can also be used. Note determined. In the identification stage the observed ob-
that in case the prototype transform can only be approx- ject is compared against the models of its class. Since
imated, the quality of this approximation as well as the the prototype and the models were brought in the library
condition number of the prototype-to-model transform into alignment, the same transformation that aligns the
Ai determine the accuracy of the model transform ob- prototype to the image also aligns the object model to
tained. The condition number of Ai affects the match the image. The prototype transform therefore is applied
even if Theorem 3 is applied, namely, even if the mod- to the models, and the obtained views are compared with
els are aligned with the prototype in advance. Conse- the image. The view that is found to be identical up to
quently, the condition number of the prototype-to-model noise and occlusion to the image determines the individ-
transform Ai should be taken into account when the li- ual identity of the object.
brary is divided into classes. The presented scheme is based on several key princi-

Finally, the scheme can be extended to handle classes pals. Recognition is divided into two sub-processes, cat-
of objects with different degrees of freedom. Consider, egorization and identification. In both processes mod-
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els are aligned with the image, and the identity of the is obtained in this process even when the objects ar,' i,•,t
object is determined by a 2D comparison; 3D recon- aligned
struction of the observed object from the image is not We now turn to constructing the optimal prototylw
performed. The difficult component of the alignment First, we define an objective function u Given a proto-
approach, namely, the recovery of correspondence and type P and an object model M,, we define the sinilarity
object pose, is performed only once for each lass; the between P and Al, as follows. Let F, be a view of .!,.

prototype transform is reused in the identification stage we measure the similarity between the prototype P and
to align the image with the individual models. the view 6, using (12). Then, we sum the measure over

all possible views of AM,. Assuming without loss of gen-
4 Constructing optimal prototypes erality that II,11 = 1, (14) can be rewritten as,

In the scheme above we assumed that the classes in the D(P, F') = II(PP+ - )-,(18)
library of models are represented by prototype objects. Without loss of generality, w- can assume that the
Since categorization is achieved by matching the im- Witrut potot P, is cmposed that the
age to prototype objects, the question of how to select constructed prototype, P, is composed of orthonorial
the best prototype should be addressed. In this section orthonormal columns satisfies Pom PT_ We can there-
we present an algorithm for constructing optimal proto- fore rewrite (18) as
types. f rewrit (18) as

Given a class of objects, the optimal prototype for D(P, (19)
this class is the object that resembles the objects of the
class the most. Under our formulation, such an object The distance between P and the model AM, is now given
would share as many features as possible with the ob- by summing D(P, i7,) over all unit-length (to eliminate
jects of its class, the position of these features on the scaling effects) views of Mi, namely
prototype would be as close as possible to their position
on the objects, and the prototype-to-model transform D)(P, M,) = I)xII (20)
for these objects would be as stable as possible. Below
we show that the optimal prototype can effectively be To obtain the objective function, we sum these distances
computed using principal component analysis; that is, over all models
by computing the dominant eigenvectors for some ma-
trix determined by the models of the class. E(P) = (ppT -I),11 (21)

Principal component analysis often is used in clas- -P =IP-11(2

sification problems to construct classes and prototypes
(11]. In existing applications, an object is represented by The object P that minimizes this function is defined to
a point in some high dimensional space, where each com- be the optimal prototype.
ponent of this point contains an invariant attribute of the Note that (21) is not the only possible objective func-
object. A hyperplane in that space represents a class of tion for this purpose. An alternative "worst case" ap-
objects. The goal of the principal component analysis proach is to measure the distance between the prototype
is, given a set of points (objects), to recover the class to the farthest model in the class (rather than summing
that these points induce. Our case is somewhat differ- this distance over all models). Except for being difficult
ent. In our case an object is represented by a continuous to compute, this measure also iF sensitive to "outlier"
linear space rather than by a point. Whereas the use models.
of hyperplanes in other schemes often is arbitrary and The prototype that minimizes (21) can be constructed
made primarily for convenience, their use in our scheme in a process that includes the following steps.
is appropriate following the linear combination scheme 1. To simplify the process we assume the column vec-
[423 (see Section 3.1). tors of each of the model matrices Mi, (1 < i <c ),

The differences outlined above also imply differences are orthonormal. (In case they are not, we first ap-
in the proof that principle component analysis applies ply a Gramschmidt process to them. Such a process
to our case. We show below that the optimal prototype obviously does not alter the space of views implied
can be computed by principal component analysis. The by the models.)
traditional proof needs to be extended since in our case
objects are represented by continuous spaces rather than 2. Build the n x n symmetric matrix
by discrete points.

The prototype constructed in this process is a 3D oh- F = MiMT
ject obtained by manipulating the objects in its class.
To allow the construction, it seems as if the objects in
the class should first be brought into alignment. In par- 3. Find the k dominant eigenvectors of F. The opti-

ticular, if the objects are represented by viewer-centered mal matrix P is constructed from these eigenvec-

models (that is, by sets of their views, see Section 3.1 for tors.
details), the different objects would then have to be rep- Note that, in general, we are trying to construct a pro-
resented by images taken from similar viewpoints. Nev- totype object that would belong to the given class This
ertheless, the process presented below does not require condition determines the choice of width k for the pro-
an initial alignment of the objects. The same prototype totype. If all the models share the same width then the
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prototype would assume this width. In the rigid case, the models, and therefore it also minmrnize., tht, rquirtd
for example, k = 4 (see Section 3.1). As mentioned in term
Section 3.3 above, in case the objects have different de- ,-•pp
grees of freedom, k is set to be the i dximum of k1 ..... k, E(P) = i(PPT - 1
where k1 ... , kt are the widths of Mi,..., Al respectively. _
In case more than k large eigenvalues are obtained, one 0
may ignore these guideline rules and construct a proto- To summarize, we showed that given a class of object
type that has higher degrees of freedom than the objects models, the optimal prototype for this class is given by
in the class (see for example [31]). the dominant eigenvectors of the matrix F, which is con-

Theorem 4 below estailishes that the algorithm above structed from the object models. Note that in proving
produces the optimal prototype. We consider here the Theorem 4 we showed that the prototype is independent
case that all the objects share similar degrees of freedom. of choice of basis for the models. This implies that, in
The same procedure can be applied with slight modifica order to construct the prototype, the object niodels VIl.
tions to include the case of objects with different degrees ..., MI do not need to first be brought into alignment.
of freedom. The process above guarantees to output the same pro-

Theorem 4: Let Mi. M 2 . , Mi be a set of models totype object even if the models are h.ot aligned.

belonging to some class C. Assume every model M, I. 5 Relevance to human vision
represented by an n x k matrix with orthonormal column
vectors. The prototype P that minimizes the term The recognition by prototypes scheme uses the general

I shape of objects as the cue for recognizing them. As was

z(P) = E / 11(PPT - i)fill already mentioned, classes in our scheme contain objects
'-,,J•, 1 =1 ~ with fairly s;milar shapes. In contrast, the human vi-

sual system recognizes objects using both shape cues as
where the integration is done over all the unit-length well as many other cues, such as color, texture, motion.
views ii cf each model Mi, is composed of the k eigen- and context, and objects are categorized in their basic
vectors of the matrix level of abstractiot. [33]. Only little is currently known

about the underlying processes for recognition used by
F = EMIMT the visual system. From what is known, in spite of the

differences pointed above, the recognition by prototypes
scheme seems to be consistent in several key issues with

that correspond to its k largest elgen values, psychological and physiological findings. In this section
Proof: Let P be composed of the k dominant eigen- we briefly review these findings.
vectors of F. According to regression principles P min- The scheme presented in this paper promotes the no-
imizes the term tion that categorization and identification are performed

I k using similar tools. In both cases view variations first
E E II(PP T - )Anq1 are compensated for, and then a view of either the hy-
i=_ j=1 pothesized prototype or object model is compared with

the image. This is in contrast to methods (such as part
where fnij is the j'th column vector of Mi. In other decomposition and functional description) that in gen-
words, consider rfiij as a point in IV'. The space spanned eral handle either categorization or identification, but
by the column vectors of P is the nearest k-dimensional do not extend to deal .. ith both problems. The avail-
hyperplane to these points, ffiij. The rest of this proof able studies in this case are inconclusive. Some evidence
extends the claim from the discrete sum over the column seem to indicate that the two processes are handled sepa-
vectors of Mi to the continuous integral over all views rately by the visual system. Agnostic and prosopagnostic
spanned by these vectors. According to our assumptions, patients often demonstrate degraded identification abili-
each matrix Mi contains an orthonormal set of column ties, whereas their performance in categorization remains
vectors. Replacing these vectors by another orthonormal intact. Double dissociation between the two processes,
basis for Mi will not change the matrix P; that is, P is however, has not been found, and so the assumption that
independent of the choice of orthonormal basis for the the two processes are handled separately in the brain has
models. This is illustrated by the following derivation, not been established. In fact, both cells that respond
To obtain a new orthonormal basis for the column space to general faces as well as cells that respond to specific
of Mi we can apply a k x k rotation matrix R to Mi faces where found lying side by side within the same
(namely, MiR). P is the best vector space for the new brain area, STS, of the macaque monkey [29]. The vul-
set as well, since nerability of the identification process to brain lessions

MiR(MiR)T = MiRRTM[ = M.JMT = M.MT can be explained by that the process requires a relatively
large memory to encode the detailed shapes of objects as

F therefore is constant for any choice of orthonormal vec- well as sophisticated image processing mechanisms to re-
tors for M 1 , ... , Mn, and so its dominant eigenvectors rep- cover a detailed description of the observed object from
resent the best vector space for for any orthonormal rep- the image (see e.g., [19]).
resentation of the objects. Consequently, P minimizes Another idea proposed here is that categorization in-
the objective function regardless of choice of basis for volves two stages: a stage of compensating for view vari-

9



atioas followed by a stage of 2D comparison to account eral affine transformations in 3D, including stretch and
for shape differences. A decoupling of view variation shear, and so the match between the prototype and thet
and semantic categorization was suggested by Lissauer imag was better than if only rigid transformations wer,
[24]. Warrington and Taylor [44, 45] found that pa- allowed. Additional exampl, using chair B and the two,
tients that suffer _ .. lessions in the posterior lobe of cars as the prototypes are shown in Figures 5-7
the right hemisphere demonstrate difficulties in catego- In Figures 8-9 we tried to match the prototypes to the
rizing objects from unconventional views, whereas their images with wrong correspondences. The results of these
performance in categorization of objects from conven- matches were significantly worse than when the correct
tional views remains intact. Additional evidence for the matches were used. This is consistent with the idea dis-
effect of view variations on categorization performance cussed ii Section 3.2 that the quality of the match can
were found for healthy subjects. Subjects that are asked be used as the objective function for resolving the correct
to name objects respond slower when the objects ap- correspondence.
pear in unconventional views [28]. Also, mental rotation Figure .0 shows the results of matching a prototype
effects, namely, response time that grows lirn-arly with four-legged chair to a single-legged office chair. It can
the tilt o," 'le object, were observed in naming tasks of be seen that the upper portions of the chairs match rel-
natural objects [21]. atively well, while the legs of the chairs do not find ap-

Finally, the process of categorization presented here propriate matches.
is achieved by comparing the image to prototype on- Figure 11 shows the result uf matching a prototyile
jects, and these prototype objects can be constructed by chair to an image of a Saab car. As an anecdotat ex-
manipulating the familiar objects of the class. Recent ample, we matched the hole below the back of the chair
studies indicate that response time in naming tasks is to the windshield of the car and the seat to the hood.
typically shorter and error rates are lower when the ob- In general, whatever correspondence is used, the two ob-
served object is similar to the prototype [5]. Similarly, jects would match poorly relative to matching the pro-
shorter reaction time is obtained when subjects are asked tot pes to objects of their class.
to answer questions of the type "does the object X be- Figures 12-13 demonstrate the identification stage. In
long to the class Y?" [34]. Ot;ler studies reported that the library we first aligned the model for chair A with
children learn good examples of classes before they learn the prototype chair (chair B) using the prototyp .-to-
poor ones [1, 32] and that subjects recall having seen model transform. Then, an imag- of chair A was cate-
the prototype or average configuration of studied face gorized (Figure 5) bv matching it to the prototype chair,
images even if this configuration was not studied F8]. and the prototype transform was computed. In the next

To summarize, although the presented scheme gen- step, the prototype transform was applied to the specific
erally does not recognize objects in their basic level of model of chair A. The result of this application is seen
abstraction, it is consistent with psychological and phys- in Figure 12. It can be seen that a near-perfect align-
iological findings in several key issues including a single ment was achieved in this process. A similar process
approach for the two sub-problems of recognition, cat- was applied to the VW car in Figure 13 using the Saab
egorization and identification, view dependency of the car as the prototype. (The result of the corisponding
two sub-processes, and the role of prototypes in catego- categorization stage was shown in Figure 6.) These fig-
rization. The findings discussed here obviously are in- ures demonstrate that although a perfect match between
conclusive, since psychological and physiological studies the prototype and the image could not been obtained,
including the ones discussed here have more than one the prototype transform can still be used to align the
possible interpretation, observed object with its specific model.

6 Implementation 7 Summary

To test the ideas presented in the paper, we have imple- We introduced in this paper a recognition scheme that
mented the scheme and applied it to several objects. In proceeds in two stages: categorization and identification.
our implementation, the library of models included two Categorization is achieved by aligning the image to pro-
classes. The first (Figure 2) contained two four-legged totype objects. For every prototype, the nearest proto-
chairs (denoted by A and B), and the second (Figure 3) type view is recovered, and the similarity between this
included two car models, a VW and a Saab. view and the image is evaluated. The prototype ahat

To demonstrate categorization, we used chair A as a most resembles the observed cbject determines its class
prototype and matched it to an image of chair B. Corre- identity. Likewise, identification is achieved by align-
spondences between the prototype and the image were ing the observed object to the individual models of its
picked manually, and, using these correspondences, the class. At this stage the prototype transform computed
prototype transform was recovered and applied to the in the categorization stage is reused to align the models
prototype. The results of matching 'he transformed pro- with the image. The model that matches the observed
totype with the image are seen in Figure 4. It can be seen object determines its specific identity. In addition, we
that the transformed prototype (middle figure) assumed presented an algorithm for constructing the optimal pro-
the same orientation as the observed object (left figure), totypes and discussed the relevance of the scheme to hu-
and that the match between the two is good considering man recognitiot
that the objects have different shapes. Note that in this An important issue conveyed by our scheme is that
implementation we allowed the objects to undergo gen- categorization can be used to facilitate the identification
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Figure 2: Pictures of two chairs used as models. We refer to these chairs by A (left) and B (right). Models for the two chairs
were constructed fomn single images using symmetry [31]. ~~~~~~~~~~~~~~~...... .. . ........ : ~ ~ ~ ~ ~ :Iiii~i~iiiiiiiiii

• iii •i•iii~i~i! iiil~iiiii% ... • ::•::••:! !•::•:•i•• •... ....

Figure 3: Pictures of two cars used as models. Left: a VW model. Right: a Saab model. Models for the two cars were
borrowed from [42].

Figure 4: Matching a prototype chair (chair A) to an image of chair B. This figure, as well as the rest of the figures, contain
three pictures. Left: the image to be recognized. Middle: the appearance of the prototype following the application of the
prototype transform. Right: an overlay of the left and the middle pictures.
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Figure 5: Matching a prototype chair (chair B) to an image of chair A.

Figure \o) t\

Figure 6: Matching a prototype car (Saab) to an image of a VW car.

Figure 7: Matching a prototype car (VW) to an image of a Saab car.

12



'=,,

Figure 8: Matching a prototype chair (chair B) to an image of chair A with wrong correspondence.

Figure 9: Matching a prototype car (Saab) to an image of a VW car with wrong correspondence.

Figure 10: Matching a four-legged chair to an image of an office chair.
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Figure 11: Matching a prototype to a chair (chair A) to an image of a Saab car.

Figure 12: Matching a model of chair A to an image of the same chair using the prototype transform computed in the
categorization stage.

Figure 13: Matching a model of a VW car to an image of the same car using the prototype transform computed in the
categorization stage.
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of objects. We showed that by first categorizing the ob- [8] Bruce, V.. 1990. Perceiving and recognizing faces
ject, the difficult stages of the alignment process, namely, Mind and Language, 5(4), 342-364.
the recovery of the object pose and the correspondence [9] Chien, C.H. and Aggarwal, J.K.. 1987. Shape recog-
between the image and the model, can be performed only nition from single silhouette. Proc. of IC(C ('onf.
once per class. Consequently, identification is reduced in London, 481-490.
this scheme into a series of simple template comparisons.

The schenie presei.ted in this paper differs from ex- [10] Davis L.S., 1979. Shape matching using relaxation
isting categorization schemes in two important aspects. techniques. IEEE Trans. on Pattern Analysis and
The existing schemes (e.g., [4]) first attempt to recover Machine Intel., 1(1), 60-72.
the part structure (geons) of the object fom the image [11] Duda, R.O. and Hart P.E., 1973. Pattern classifica-
alone. This structure is assumed to be almost invari- tion and scene analysis. Wiley-Intersciencc Publhca-
ant both to rotation of the object and across objects of iton, John Wiley and Sons, Inc.
the same class. In contrast, our scheme does not at-tptto recover any 3D information from the image [12] Faugeras, O.D. and Hebert, M., 1986. The represen-
tempt torcvray3 nomto rmteiaetation, recognition and location of 3D objects. mnt-alone. M oreover, it separates the two effects that deter- J. R obo tics Resear ch of 27-52.
mine the object's appearance: view variation effects and J. Robotics Research 5(3), 27-52.
deformations due to class variability. View variations are [13] Fischler, M.A. and Bolles, R.C., 1981. Random
compensated for by recovering the view of the prototype sample consensus: a paradigm for model fitting with
that most resembles the image, and the amount of de- application to image analysis and automated car-
formation that separates the prototype from the specific tography. Com. of the A.C.., 24(6), 381-395.
object is evaluated by assessing the difference (in 2D) [14] Forsyth, D., Mundy, J.L., Zisserman, A., Coelho.
between the nearest prototype view and the image. C., Heller, A., and Rothwell, C., 1991. Invariant de-

Open problems for future research include solving the scriptors for 3-D object recognition and pose. IEEE
correspondence between prototypes and images, defining Trans. on Pattern Analysis and Machine Intel., 13,
effective measures to evaluate the quality of matches, 971-991.
and extending the system to incorporate additional cues,
such as color and texture. [15] Grirnson W.E.L. and Lozano-P~rez T., 1984.
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